Shape and distribution of FWP2 potholing on the Merensky Reef, Northam Platinum Mine:

Implications for pothole formation and growth

D.S. Smith

Northam Platinum Mine, P.O. Box 441, Thabazimbi, 0380
ever: dsmith@norplats.co.za

I.J. Basson

Tect Geological Consulting, Unit 89, Cape Bay, Athol Lane, Somerset West, 7130
ever: ianbasson@tect.co.za
1. LOCATION OF STUDY AREA

2. LOCAL GEOLOGY / STRATIGRAPHY

3. AIMS OF STUDY

4. POTHOLE SHAPE
 i. AXIAL RELATIONSHIPS
 ii. ECCENTRICITY/CIRCULARITY
 iii. LONG AXIS ORIENTATION
 iv. NORMALISED POTHOLE SHAPE
 v. DENDRICITY

5. POTHOLE CENTRE DISTRIBUTION
 i. FRACTAL ANALYSIS
 ii. FRY ANALYSIS

6. MODEL FOR POTHOLE GROWTH
DISTRIBUTION OF REEF TYPES
AXIAL RELATIONSHIPS

Pothole Long Axis (m) vs Short Axis (m)

\[y = 0.6239x \quad R^2 = 0.9258 \]

N = 1385

Short vs Long Axis Ratio vs. Max Long Axis Length
(excl. Ratios of 1:1 and long axes < 6m)

Max Length of Long Axis Interval
(from correlation within ranges)

N = 1385
Pothole Eccentricity

Eccentricity test

Circular Potholes

\[\varepsilon = 1 - \frac{SA^2}{LA^2} = 0 \]

Non-Circular (Elliptical) Potholes

\[\varepsilon = 1 - \frac{SA^2}{LA^2} > 0 \]

(\(\varepsilon \to 1\) with increasing eccentricity)
POTHOLE SHAPE ANALYSIS
Pothole Circularity

Circularity test

Circular potholes

\[\tilde{r} = \frac{\sum(r)}{nr} = 1 \]

Non-circular (elliptical) potholes

\[\tilde{r} = \frac{\sum(r')}{nr} < 1 \]

\[\tilde{r} \to 2 / nr \text{ (ie. 0.17) with increasing aspect ratio} \]
Pothole Circularity

N = 638

Circularity interval, \bar{r}

Circularity, \bar{r}

- 0-35
- 35-60
- 60-100
- 100+

Frequency

N = 638
Pothole long axis orientation
Average normalized pothole shapes

- Mean total - all data: $n=638$
- Mean total - LA<35m: $n=390$
- Mean total - 35<LA<60: $n=111$
- Mean total - 60<LA<100: $n=81$
- Mean total - 100<LA: $n=56$
Pothole Dendricity

Symmetrical potholes will have $\mathcal{D} = 0$

$\mathcal{D} \rightarrow \infty$ with increasing disruption/dendricity

$\mathcal{D} = |\mathcal{D}[x]| + |\mathcal{D}[y]|$

$\mathcal{D}[x] = |(r_{090} - r_{270})| + |(r_{030} - r_{330})|$

$+ |(r_{060} - r_{300})| - |(r_{120} - r_{240})| - |(r_{150} - r_{210})|$

$\mathcal{D}[y] = |(r_{000} - r_{180})| + |(r_{030} - r_{150})|$

$+ |(r_{060} - r_{120})| - |(r_{210} - r_{330})| - |(r_{240} - r_{300})|
Fractal Analysis

N = 1385 centre points
Fry Plots

Interpretation supported by trend diagrams

All data

60<100m

< 35m

> 100m

35<60m
Summary of findings

<table>
<thead>
<tr>
<th>CRITERIA</th>
<th>RANGE OF LONG AXIS LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 35m</td>
</tr>
<tr>
<td>MEAN SA:LA</td>
<td>0.47 – 0.55</td>
</tr>
<tr>
<td>DECREASING ECCENTRICITY</td>
<td></td>
</tr>
<tr>
<td>DENDRICITY</td>
<td></td>
</tr>
<tr>
<td>MEAN NORMALISED SHAPE</td>
<td>SIMPLE ELLIPSE</td>
</tr>
<tr>
<td>MEAN CIRCULARITY</td>
<td>0.64</td>
</tr>
<tr>
<td>MEAN ECCENTRICITY</td>
<td>1.00</td>
</tr>
<tr>
<td>DENDRICITY</td>
<td>0.50</td>
</tr>
<tr>
<td>PREFERRED ALIGNMENT OF POTHOLE CENTRES</td>
<td>025°</td>
</tr>
<tr>
<td></td>
<td>040°</td>
</tr>
<tr>
<td></td>
<td>075°</td>
</tr>
<tr>
<td></td>
<td>110°</td>
</tr>
<tr>
<td></td>
<td>120°</td>
</tr>
<tr>
<td></td>
<td>150°</td>
</tr>
</tbody>
</table>
Model for pothole growth
THANK YOU