Structural controls of fluid flow and gold mineralization in the easternmost parts of the Karagwe-Ankole Belt of north-western Tanzania

Corné Koegelenberg a,⁎, Alexander F.M. Kisters a, Chris Harris b

⁎ Corresponding author.
E-mail addresses: cornekoegelenberg@tect.co.za (C. Koegelenberg), akisters@sun.ac.za (A.F.M. Kisters), chris.harris@uct.ac.za (C. Harris).

ARTICLE INFO
Article history:
Received 7 December 2015
Received in revised form 6 March 2016
Accepted 11 March 2016
Available online 17 March 2016

ABSTRACT
Gold mineralization in the Biharamulo region of western Tanzania is confined to the sheared, low-angle basement-cover contact between Archaean basement gneisses of the Tanzania Craton and the structurally overlying, low-grade metamorphic metasediments of the Mesoproterozoic Karagwe-Ankole Belt. Regional-scale fluid flow along this detachment is indicated by the pervasive silification and retrogression of wall rocks to pervasively foliated phyllonites and pyritization of particularly metasediments, commonly graphite-rich, in the hanging wall of the shear zone. Gold mining centres on specific structural sites along the detachment, but also in stratigraphically higher sections in the structurally overlying metasediments. Zones of gold mineralization along the detachment correlate with NE trending ramp structures (dip angles 20°–35°) that are most ideally oriented for slip and reactivation within the low-angle phyllonitic detachment. Repeatedly overprinted auriferous quartz vein stockworks in quartzofeldspathic gneisses immediately below the detachment indicate brittle fracturing of the competent footwall lithotypes during slip along the weaker detachment. In cases of massive silification, up to 50 m thick quartz blows are formed along the contacts between detachment phyllonites and footwall gneisses. The multiple overprinting relationships of successive quartz-vein generations in these zones of massive silification suggests that the quartz blows acted as competent blocks in the weak detachment, causing the repeated overprint of earlier silification by later fracturing and quartz-veining events. Gold mineralization above the detachment and in stratigraphically higher metasediments is closely associated with fold amplification and possibly gold mineralization. The extent (> 100 km) of the basement-cover detachment and associated alteration is indicative for a regional-scale fluid system. Gold mineralization is, however, controlled by local structures and lithological contrasts that require the detailed mapping and sampling of the regional structure.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Tanzania is Africa’s 4th largest gold producer with an annual production of ca. 40 tonne Au (Tanzania Chamber of Minerals and Energy, 2015). Some 90% of the gold production comes from late-Archaean greenstone belts of the Tanzania Craton (TC), mainly from the Lake Victoria region and the Lake Nyanza- and East Lake Victoria Superrterranes (Borg and Shackleton, 1997; Borg and Krogh, 1999; Kabete et al., 2012). There have been very few recent gold discoveries on the TC and the apparent maturation of gold exploration on the craton has shifted exploration efforts towards the less explored margins of the TC (Kabete et al., 2012) (Fig. 1). For the most part, the TC is bordered by younger orogenic belts including the Pan-African Mozambique Belt in the east (Fritz et al., 2013) and the Mesoproterozoic Usagaran-, Ubendian-, Rusizian- and Ruwenzori Belts from the southern to north-western margins of the TC (e.g., De Waele et al., 2008, and references therein) (Fig. 1). These are mostly deeply eroded amphibolite- and granulite-facies terrains with somewhat limited potential for hydrothermal gold mineralization compared to the greenschist-facies deposits of the TC. In contrast, low-grade metamorphic, late Paleo- to Mesoproterozoic fold-and-thrust belts and foreland basins unconformably or structurally overlie much of the western parts of the TC. These...