Kimberlitic fluid extraction from the lithospheric mantle due to rapid deviatoric stress orientation changes during the Cretaceous

Introduction

Kimberlite and related rocks range in age from the Archaean (evidence for diamonds in the Witwatersrand Basin and in Ghana; phlogopite-rich lamprophyre in the Kuruman area of the Kaapvaal Craton; Janse, 1985; Bristow et al., 1986) to Recent (Leucite Hills in Wyoming and the Eiffel area of Germany; Janse, 1985). Carbonatites and kimberlite occurrences become more abundant from the Proterozoic onwards, and remarkably more abundant from approximately 600 Ma onwards (Janse, 1985; Dawson, 1986; Wolley, 1989; Lubala, 1991; Haggerty, 1989, 1994; Harmer, 1998), partly due to their erosion-prone nature and ongoing crustal uplift and evolution. The most notable post-Pan-African peak in kimberlite volcanism occurred in the mid-Cretaceous (approx. 124-83 Ma) in southern Africa, North America, Brazil and Siberia, areas that display a 200 Ma subsidiary kimberlite intrusion peak (Skinner et al., 1992; Haggerty, 1994). Kimberlite intrusion events in the southern Africa region are directly comparable to carbonatite intrusion events in the same region; approximately 679-491 Ma (essentially Pan-African) and 139-116 Ma in Angola, Zimbabwe, Malawi, Tanzania and South Africa (Wooley, 1989). While Janse (1985) cites approximately 19 kimberlite-/lamproite-forming events, Dawson (1986) approximates 16 events or phases worldwide. A total of 4 main events are proposed for southern Africa (Dawson, 1986; Skinner et al., 1992; Fig. 1).

To date over 780 kimberlites have been found in southern Africa (Smith, 1983; Smith et al., 1985; Gurney et al., 1991; Skinner et al., 1992; White et al., 1995). Mesozoic southern African kimberlites are divided into 2 groups on geochemical and mineralogical grounds (Smith et al., 1985); 145-115 Ma (mainly Group II) and 95-80 Ma (mainly Group I) (op. cit). Group I kimberlites, which are "normal" ilmenite-bearing kimberlites and have distinct Pb, Sr and Nd isotopic ratios, also intruded at approximately 1600 Ma, 1200 Ma, 500 Ma; Group Il kimberlites are highly-micaceous and ilmenite-poor (op. cit.). While carbonatitic activity increased with time, it is episodic and temporally & spatially associated with major orogenic events (Woolley, 1989); i.e. the "localization of carbonatitic activity over time / several periods suggests lithospheric control", furthermore, "the location and genesis of carbonatites [and carbonatitic activity] is determined in some way by the physical and/or chemical properties of the lithospheric plate"; supported by van Straaten (1989), "carbonatite magmatism is related to recurrent reactivation of older structures and argues for a control by crustal rather than mantle

The South African Context

I.J. BASSON Dept. of Geological Sciences

Univ. of Cape Town, Rondebosch 7701 e-mail: <u>ibasson@geology.uct.ac.za</u>

H. JELSMA CIGCES, Dept. of Geological Sciences Univ. of Cape Town, Rondebosch 7701 e-mail: jelsma@cigces.uct.ac.za

G. VIOLA Dept. of Geological Sciences Univ. of Cape Town, Rondebosch 7701 e-mail: <u>gviola@geology.uct.ac.za</u>

Objectives

To clarify and summarize the sequence of events operative in southern African kimberlite intrusion, and the time-spans, periodicity and overlap of these events.

To merge recent data on a number of apparently unrelated features, such as plate motion vectors, lithospheric mantle fabrics and preferential mantle melt accumulation within these fabrics, with a view to explaining the mechanism of unusually abundant, geologically instantaneous kimberlite emplacement in the southern Africa region during the Mesozoic.

Lithospheric Mantle Structure

- Localized feeders of the Bushveld Complex (contains Premier kimberlite) (e.g. Viljoen, 1999); cratonic root unscathed i.t.o. diamond potential.
- A N50E-(approximately NE-) trending shear wave splitting (fast) polarization direction evident from a closely-spaced broadband array across the Kimberley area (Vinnik *et al.*, 1995; Fouche *et al.*, 2001).
- Parallels "central EET high", an "arcuate saddle-like maximum (average width >> 350 km, average magnitude >> 70 km) from northeast to southwest [which] dominates the EET map" (Doucouré and de Wit, 1998).
- The central EET high coincides with **present-day velocity vector of the African plate** (*q.v.* Vinnik *et al.*, 1995), N40-45E at 14-20 mm.yr⁻¹ (Online Goddard Space Flight Centre, VLBI Solution KB2001 of Version 01).
- Trend coincides with the spatial (but not temporal?) Venetia-Premier-Kimberley kimberlite trend (*c.f.* Hartnady and le Roex, 1985; le Roex, 1986; Skinner *et al.*, 1992), and NE-SW lithospheric extensional stress of up to 8 MPa at approximately 125 km depth (Doucouré and de Wit, 1998).
- Two mutually orthogonal lattice preferred orientations pervasive throughout the lvrea Zone (LPO) (Ben-Ismail *et al.*, 1998, 2001):
 1) strongly plastically deformed and sheared with a high degree of deformation/recrystallization, possibly only locally formed by high-temperature asthenospheric diapers and 2) c.g., commonly garnet-bearing, without microstructural signs of high temperature, stress or deformation rates; equilibrated at normal continental geotherms between 60 and 130 km, representative of the Archaean cratonic root.
- McKenzie (1979), Ribe (1989) and Vinnik *et al.* (1995) suggest seismic anisotropy of the mantle depends on the LPO of olivine, in turn caused by finite strain from simple shear. The [100], [010] and [001] axes in olivine become aligned with the longest, shortest and intermediate strain ellipsoid axes; maximum principal stress direction (σ_1) sub-perp. to 010 faces of olivine crystals (*q.v.* Waff and Faul, 1992); similar to oceanic crust, [100] axes oriented sub-parallel to spreading direction in the upper mantle (Christensen, 1984; Silver and Chan, 1988).
- Pearson *et al.* (1995) and Shirey *et al.* (2001) suggest no major thermotectonic event since Archaean times. Vinnik *et al.* (1995) suggested that the **present "flow"** or shearing of sublithospheric mantle of the Kaapvaal Craton (e.g. Ribe, 1989) is **inherited from Precambrian**

Cretaceous Events

processes."

- Increased mid-Cretaceous mantle convection ("superplumes"; Larson 1991a, b; Ricciardi and Abbott, 1996; Haggerty, 1994).
- Accelerated plate motion coincided with the arrival of the Parana, Etendeka, Gondwana and Ontong Java Superplumes, representing a deep-sourced heat pulse from the CMB and coinciding with a "Normal" geodynamo field orientation between 120 and 80 Ma (Haggerty, 1994).
- **Higher mean mantle Potential temperatures** (PTs), temperatures skewed towards higher values and a greater degree of temperature variance, (Ricciardi and Abbott, 1996); increased rate of global mantle convection and plate motion (*q.v.* Sharp, 1974; Hartnady and le Roex, 1985; le Roex, 1986; Larson, 1991a, b; Hill, 1991; Haggerty, 1994). A more regular potential mantle temperature resumed after *ca.* 73 Ma or just after the end of the mid-Cretaceous (*op. cit.*).
- Kimberlites erupted prior to 90 Ma (nominally Group II types) sampled mainly harzburgitic material from depths between 180 and 140 km, within a 210-220 km thick lithosphere with a geotherm of 34 mW.m⁻² (Smith, 1983; Smith *et al.*, 1985; Brown *et al.*, 1998).
- **Post-90 Ma** kimberlites sampled a **highly metasomatised lithosphere**, raised geotherm of 40 mW.m⁻², from shallower depths (**170 km**; *op. cit.*).
- A mid- to late-Cretaceous spike in sediment volume in the offshore Natal-Mozambique and Orange Basins (Summerfield, 1996; Brown *et al.*, 1998; 1990; Botha and de Wit, 1996).
- Extreme thinning of the MBL, significantly raised geotherms and uplift driven by buoyancy, resulting from a decrease in the density of the lithospheric roots (*q.v.* Brown *et al.*, 1998; 1990), causing a mid-Cretaceous global sea-level highstand (e.g. Summerfield, 1996).
- Uplift and denudation, constrained by apatite fission-track (FT) dating. A 101 ± 10 Ma FT apatite age for rocks outcropping at Luderitz (Namibia), 96 ± 7 Ma and 103 ± 8 Ma FT apatite ages 50 km east of the western southern African margin, a relatively poorly constrained age of 140 ± 16 Ma at Aus (approximately 100 km from the western margin) and an age of 83 ± 6 Ma at 200 km from the western southern African margin (Summerfield, 1996; Brown, 1992; Brown *et al.*, 1990).
- "Vertically coherent deformation" (Silver et al., 2001) wherein changes in the lithospheric mantle are reflected in the overlying upper lithosphere.

Cretaceous Plate Motion

- Data summarized in Summerfield (1996), in turn based on data from Duncan (1981), Morgan (1983), Hartnady and le Roex (1985) and le Roex (1986), depict a "U-turn" between 150 and 50 Ma, wherein plate motion swung from W (relative to present African azimuths) to SW (*q.v.* Online Goddard Space Flight Centre, VLBI Sol. KB2001 of Version 01).
- Recent summaries of African Plate motion spreading vectors (Műller *et al.*, 1993; Dalziel *et al.*, 2000; University of Austin, Texas data; Lawver *et al.*, 2001), calculated from mid-ocean ridge studies: 140 Ma to 60 Ma showed unusual characteristics, compared to pre-145 Ma and post-60 Ma

Kimberlite Emplacement Rates

Reference	Basis	Upper mantle-lower crust transit $\Delta Z = 100-10 \text{ km}$ fluid velocity (km.hr ⁻¹) mins transit hours transit	Transit speed within the upper crust as dykes $\Delta Z = 10-1 \text{ km}$ <u>fluid velocity</u> mins transit hours transit	Fluidised intrusion as diatremes $\Delta Z = 1-0$ km fluid velocity mins transit hours transit
McGetchin (1968) Model M	Fluid dynamics, Bernoulli equation, Newtonian flow in pipe	<u>(219)</u> (25)	•	•
McGetchin (1968) Model M	Fluid dynamics, Bernoulli equation		<u>(669)</u> (0.8)	•
McGetchin (1968) Model M	Fluid dynamics, Bernoulli equation	•	•	<u>(1998)</u> (0.03)
McGetchin (1968) Model F	Fluid dynamics, Bernoulli equation, Newtonian flow in pipe	<u>43</u> 29	-	-
McGetchin (1968) Model F	Fluid dynamics, Bernoulli equation	-	<u>122</u> 4	-
McGetchin (1968) Model F	Fluid dynamics, Bernoulli equation	-	•	<u>(482)</u> (0.1)
Ferguson (1970)	Flow in kimberlite dykes	-	<u>72</u> 7.5	-
Currie and Ferguson (1970)	Structural analysis, propagation of lamprophyre dykes	-	<u>72</u> 7.5	-
McGetchin and Ullrich (1973)	Fluid dynamics	<u>72-90</u> 75-60	-	-
McGetchin <i>et al.</i> (1973); Ullrich (1969)	Fluid dynamics and phase relations of carbonatitic and kimberlitic fluids	<u>200-20</u> 29.7-297 0.5-4.95		
Smyth and Hatton (1977)	Preservation of diamond and coesite in lower transit area	Several hours	-	-
O'Hara <i>et al.</i> (1971); Mori and Green (1975)	Equilibration of mechanical mixture of water and mantle minerals		<u>100-4</u> NA 1-24	
Mercier (1979)	Recrystallization rates of strain- free neoblasts which replace strained crystalline mantle material		<u>40-70</u> 150-85 2.5-1.4	
McCallister <i>et al.</i> (1979)	Exsolution in clinopyroxene		<u>11-25</u> 545-240 9.1-4	
Ganguly (1981)	Kinetic diffusion calculations on pyroxenes and Ca-poor amphiboles		0.7-0.01 NA 144-8544	
Mitchell (1979), Canil, Fedortchouck (1999), Rutherford and Gardner (2000)	Mafic dyke mineralogy, garnet dissolution rates (based on 160km thick lithosphere of Mitchell <i>et al.</i> , 1998)		16-160 375-38 6.3-0.6	

Kimberlite Trends?

or related to consistent plate motion the Jurassic period; a situation similar to the North American Craton (e.g. Ribe, 1989; Ruppel, 1995).

Mantle Melt Accumulation

- The measured effective dihedral angles for basaltic melt in contact with olivine range from 20° to 50°: for a wide range in melt fractions and dihedral angle, natural melt forms an interconnected network.
- Increasing melt fraction and increasing grain size results in an increase in the size and aspect ratio of melt pockets, (usually parallel to the 010 crystal faces of olivine); occurs under hotspot conditions (Daines and Kohlstedt, 1996; Crough *et al.*, 1980; Haggerty, 1994).
- The melt pocket aspect ratio (long : short axis ratio) is highest at low melt fractions (0.01 to 0.02: concurs with the partial melt fractions proposed for the generation of kimberlitic/carbonatitic magmas or melt fraction required for 50% of grain boundaries to be wetted; Hirth and Kohlstedt, 1995a, b; Johnson *et al.*, 1990; Riley *et al.*, 1990) & at higher melt fractions (>0.18).
- Melilititic, nephelinitic and carbonatitic (and kimberlitic) melts are **highly mobile** in the upper mantle/lithospheric mantle at very small melt volumes (<1%; e.g. Watson and Brenan, 1987; McKenzie, 1989; Harmer, 1998).
- Ave'Lallemant and Carter (1970) noted preferred orientations of melt in an anisotropically deformed lherzolite:melt system, deformed at strain rates of 10⁻⁵ s⁻¹ and confining pressures of 2.5 GPa
- Bussod and Christie (1991) found preferred orientation of melt 'slots' along recrystallized grain boundaries at 30° to σ₁ in partially molten lherzolite deformed under hydrous conditions at confining pressures of 1.5 GPa, 900-1100°C and differential stress of 100-400 MPa.
- Daines and Kohlstedt (1996): samples deformed at differential stresses greater than 100 MPa exhibited more melt in pockets at 15-20° to σ₁; melt pockets oriented parallel to σ₁ were also a factor of 2 larger, longer and more elongate than those arranged perpendicular to σ₁.
- Shear deformation of olivine-basalt results in a **preferred melt orientation**: a differential stress of 170 MPa and a total strain of over 230% produces melt preferred orientation within 20° of σ_1 (*c.f.* Bussod and Christie, 1991, Faul *et al.*, 1994; Daines and Kohlstedt, 1996).
- Daines and Kohlstedt (1996): the degree of melt-preferred orientation relates to the duration of a (relatively high) differential stress, rather than strain rate/total cumulative strain (recall the NE-SE oriented 8 MPa found by Doucoure and de Wit, 1998). Surplus melt pockets primarily occur and may be expelled where the semi-molten rock contains more than its minimum energy porosity, a situation that arises during the deforming/non-static or non-hydrostatic case.

Sequencing

motion (Figure 1a). The direction of spreading (degrees from north) of the plate oscillated greatly; approximately 220° at 135 Ma, 140° at 125 Ma, 210° at 115 Ma, 145° at 100 Ma, 195° at 90 Ma to 160° at 60 Ma (*op. cit.*); this "oscillation" overlapped with a 135-100 Ma low-velocity period, with an average half spreading rate of about 6 mm.yr⁻¹, followed by a 95-60 Ma period wherein the half spreading rate doubled.

Model

- Consistent plate motion direction and velocity; development of preferred olivine alignment (*q.v.* present Kaapvaal Craton Ivrea zone fabric/LPO), melt orientation parallel to σ₁, coarsening of melt pockets, esp. from 184 Ma onwards (Karoo Basalt event). Precursor stresses to "U-Turn"/slowing down/rapidly varying plate motion direction (60/30 Myr periodicity).
- Phase of relatively poorly constrained motion, wherein plate vector oscillated (or continental U"-Turn", imposing σ₁ at high/obtuse angles on pre-existing melt; rapid (Incremental? Staggered?) readjustment of effective dihedral angle and expulsion of low-volume carbonatitic/kimberlitic fluids from thin mantle layers, necessarily accompanied by very rapid deformation of the lithospheric mantle (oscillation of <10 Myr periodicity). Note velocity "kick" at 100 Ma (*c.f.* changes in lithospheric mantle at approximately 90 Ma). Possible imposition of rapid deviatoric stress at high/obtuse angles to trends defined by Verncombe & Verncombe (2002), providing repeated/long-lived hosts for kimberlite/carbonatite intrusion (fluid expulsion in < 3 hours).</p>
- Resumption of constantly changing plate motion vector and more regular plate velocities. Re-establishment of mantle fabric in <10 000 years – LPO currently evident from seismic studies.

Potential for dilation along trends & repeated kimberlite/carbonatite intrusion

Conclusion

Plate still-stands, relative plate still-stands and plate motion velocity or vector changes provide for rapidly oscillating deviatoric stresses, which have a profound effect on mantle fabrics and preferred melt accumulation. Transmission of stress into the upper mantle must be extremely rapid to overcome grain-scale recrystallization ("Otswald ripening") rates, especially in the case of CO_2 -H₂O fluid:matrix systems.